Confronta le due frazioni - 329/1.054 e - 332/1.058, quale è più grande? Calcolatrice online

Le frazioni - 329/1.054 e - 332/1.058 vengono confrontate costruendo frazioni equivalenti, che hanno denominatori uguali o numeratori uguali

Per confrontare e ordinare più frazioni, dovrebbero avere lo stesso denominatore o lo stesso numeratore.

L'operazione di confronto fra frazioni:
- 329/1.054 e - 332/1.058

Semplificare l'operazione
Riduci (semplifica) le frazioni ai minimi termini, alla forma equivalente più semplice:


La frazione: - 329/1.054

- 329/1.054 è già semplificata ai minimi termini.

Il numeratore e il denominatore non hanno fattori primi comuni:


  • 329 = 7 × 47
  • 1.054 = 2 × 17 × 31
  • MCD (329; 1.054) = 1


La frazione: - 332/1.058

  • Scomposizione del numeratore e del denominatore in fattori primi:
  • 332 = 22 × 83
  • 1.058 = 2 × 232
  • Moltiplicare tutti i fattori primi comuni: se ci sono fattori primi che si ripetono, li prendiamo solo una volta e solo quelli che hanno l'esponente più basso (le potenze più basse).
  • MCD (332; 1.058) = 2

- 332/1.058 = - (332 : 2)/(1.058 : 2) = - 166/529


La frazione può anche essere semplificata senza calcolare il MCD; scomporre il numeratore e il denominatore in fattori primi ed eliminare i fattori comuni:


- 332/1.058 = - (22 × 83)/(2 × 232) = - ((22 × 83) : 2)/((2 × 232) : 2) = - 166/529




Per confrontare e ordinare le frazioni, riducile allo stesso numeratore.

Per ridurre le frazioni allo stesso numeratore dobbiamo:

  • 1) calcola questo numeratore comune
  • 2) calcolare quindi i numeri per cui moltiplicare ciascun numeratore, in modo da avere tutti i numeratori delle frazioni uguali
  • 3) trasformare le frazioni in forme equivalenti, che hanno lo stesso numeratore

Calcola il numeratore comune

Il numeratore comune non è altro che il minimo comune multiplo (MCM) dei numeratori delle frazioni.


Per calcolare il MCM abbiamo bisogno della scomposizione dei numeratori in fattori primi:


329 = 7 × 47

166 = 2 × 83


Moltiplicare tutti i fattori primi unici: se ci sono fattori primi che si ripetono li prendiamo solo una volta, e solo quelli che hanno l'esponente più alto (le potenze più alte).


Link esterno » Calcola MCM, il minimo comune multiplo di numeri, calcolatrice online


MCM (329, 166) = 2 × 7 × 47 × 83 = 54.614



Calcola i numeri per i quali viene moltiplicato ciascun numeratore, in modo da avere tutti i numeratori delle frazioni uguali:

Dividi il MCM per il numeratore di ogni frazione.


- 329/1.054 ⟶ 54.614 : 329 = (2 × 7 × 47 × 83) : (7 × 47) = 166


- 166/529 ⟶ 54.614 : 166 = (2 × 7 × 47 × 83) : (2 × 83) = 329




Riduci le frazioni allo stesso numeratore:

  • Cambia ogni frazione in una equivalente: moltiplica sia il numeratore che il denominatore per il numero corrispondente, calcolato sopra.
  • In questo modo tutte le frazioni avranno numeratori uguali (lo stesso numeratore):

- 329/1.054 = - (166 × 329)/(166 × 1.054) = - 54.614/174.964


- 166/529 = - (329 × 166)/(329 × 529) = - 54.614/174.041




Le frazioni hanno lo stesso numeratore, confronta i loro denominatori.

Più grande è il denominatore, più grande è la frazione negativa.


Più grande è il denominatore, più piccola è la frazione positiva.


::: L'operazione di confronto fra frazioni :::
La risposta finale:

Le frazioni ordinate in ordine crescente:
- 54.614/174.041 < - 54.614/174.964

Le frazioni iniziali ordinate in ordine crescente:
- 332/1.058 < - 329/1.054

Come vengono scritti i numeri sul nostro sito web: il punto '.' è usato come separatore delle migliaia; la virgola ',' viene utilizzata come separatore decimale; i numeri sono arrotondati a un massimo di 12 decimali (se del caso). L'insieme dei simboli utilizzati sul nostro sito web: / la linea di frazione; : dividendo; × moltiplicando; + più (sommando); - meno (sottrazione); = uguale; ≈ approssimativamente uguale.

Confronta e ordina le frazioni, calcolatrice online:

Scopri come confrontare le frazioni. Passi. Esempi.

Come confrontare due frazioni?

1. Frazioni che hanno segni diversi:

  • Qualsiasi frazione positiva è maggiore di qualsiasi frazione negativa, ad esempio:
  • 4/25 > - 19/2

2. Una frazione propria e una impropria:

  • Qualsiasi frazione impropria positiva è maggiore di qualsiasi frazione propria positiva, ad esempio:
  • 44/25 > 1 > 19/200
  • Qualsiasi frazione impropria negativa è inferiore a qualsiasi frazione propria negativa, ad esempio:
  • - 44/25 < -1 < - 19/200

3. Frazioni che hanno numeratori e denominatori uguali:

  • Le frazioni sono uguali, ad esempio:
  • 89/50 = 89/50

4. Frazioni che hanno numeratori distinti ma lo stesso denominatore.

  • Frazioni positive: confronta i numeratori, la frazione più grande è quella con il numeratore più grande, ad esempio:
  • 24/25 > 19/25
  • Frazioni negative: confrontare i numeratori, la frazione maggiore è quella con il numeratore più piccolo, ad esempio:
  • - 19/25 < - 17/25

5. Frazioni che hanno denominatori distinti ma lo stesso numeratore.

  • Frazioni positive: confrontare i denominatori, la frazione più grande è quella con il denominatore più piccolo, ad esempio:
  • 24/25 > 24/26
  • Frazioni negative: confrontare i denominatori, la frazione più grande è quella con il denominatore più grande, ad esempio:
  • ie: - 17/25 < - 17/29

6. Frazioni che hanno denominatori e numeratori distinti.

Maggiori informazioni su frazioni / teoria: