Confronta le due frazioni - 73/120 e - 78/122, quale è più grande? Calcolatrice online

Le frazioni - 73/120 e - 78/122 vengono confrontate costruendo frazioni equivalenti, che hanno denominatori uguali o numeratori uguali

Per confrontare e ordinare più frazioni, dovrebbero avere lo stesso denominatore o lo stesso numeratore.

L'operazione di confronto fra frazioni:
- 73/120 e - 78/122

Semplificare l'operazione
Riduci (semplifica) le frazioni ai minimi termini, alla forma equivalente più semplice:


La frazione: - 73/120

- 73/120 è già semplificata ai minimi termini.

Il numeratore e il denominatore non hanno fattori primi comuni:


  • 73 è un numero primo.
  • 120 = 23 × 3 × 5
  • MCD (73; 120) = 1


La frazione: - 78/122

  • Scomposizione del numeratore e del denominatore in fattori primi:
  • 78 = 2 × 3 × 13
  • 122 = 2 × 61
  • Moltiplicare tutti i fattori primi comuni: se ci sono fattori primi che si ripetono, li prendiamo solo una volta e solo quelli che hanno l'esponente più basso (le potenze più basse).
  • MCD (78; 122) = 2

- 78/122 = - (78 : 2)/(122 : 2) = - 39/61


La frazione può anche essere semplificata senza calcolare il MCD; scomporre il numeratore e il denominatore in fattori primi ed eliminare i fattori comuni:


- 78/122 = - (2 × 3 × 13)/(2 × 61) = - ((2 × 3 × 13) : 2)/((2 × 61) : 2) = - 39/61




Per confrontare e ordinare le frazioni, riducile allo stesso numeratore.

Per ridurre le frazioni allo stesso numeratore dobbiamo:

  • 1) calcola questo numeratore comune
  • 2) calcolare quindi i numeri per cui moltiplicare ciascun numeratore, in modo da avere tutti i numeratori delle frazioni uguali
  • 3) trasformare le frazioni in forme equivalenti, che hanno lo stesso numeratore

Calcola il numeratore comune

Il numeratore comune non è altro che il minimo comune multiplo (MCM) dei numeratori delle frazioni.


Per calcolare il MCM abbiamo bisogno della scomposizione dei numeratori in fattori primi:


73 è un numero primo.

39 = 3 × 13


Moltiplicare tutti i fattori primi unici: se ci sono fattori primi che si ripetono li prendiamo solo una volta, e solo quelli che hanno l'esponente più alto (le potenze più alte).




Calcola i numeri per i quali viene moltiplicato ciascun numeratore, in modo da avere tutti i numeratori delle frazioni uguali:

Dividi il MCM per il numeratore di ogni frazione.


- 73/120 ⟶ 2.847 : 73 = (3 × 13 × 73) : 73 = 39


- 39/61 ⟶ 2.847 : 39 = (3 × 13 × 73) : (3 × 13) = 73




Riduci le frazioni allo stesso numeratore:

  • Cambia ogni frazione in una equivalente: moltiplica sia il numeratore che il denominatore per il numero corrispondente, calcolato sopra.
  • In questo modo tutte le frazioni avranno numeratori uguali (lo stesso numeratore):

- 73/120 = - (39 × 73)/(39 × 120) = - 2.847/4.680


- 39/61 = - (73 × 39)/(73 × 61) = - 2.847/4.453




Le frazioni hanno lo stesso numeratore, confronta i loro denominatori.

Più grande è il denominatore, più grande è la frazione negativa.


Più grande è il denominatore, più piccola è la frazione positiva.


::: L'operazione di confronto fra frazioni :::
La risposta finale:

Le frazioni ordinate in ordine crescente:
- 2.847/4.453 < - 2.847/4.680

Le frazioni iniziali ordinate in ordine crescente:
- 78/122 < - 73/120

Come vengono scritti i numeri sul nostro sito web: il punto '.' è usato come separatore delle migliaia; la virgola ',' viene utilizzata come separatore decimale; i numeri sono arrotondati a un massimo di 12 decimali (se del caso). L'insieme dei simboli utilizzati sul nostro sito web: / la linea di frazione; : dividendo; × moltiplicando; + più (sommando); - meno (sottrazione); = uguale; ≈ approssimativamente uguale.

Confronta e ordina le frazioni, calcolatrice online:

Scopri come confrontare le frazioni. Passi. Esempi.

Come confrontare due frazioni?

1. Frazioni che hanno segni diversi:

  • Qualsiasi frazione positiva è maggiore di qualsiasi frazione negativa, ad esempio:
  • 4/25 > - 19/2

2. Una frazione propria e una impropria:

  • Qualsiasi frazione impropria positiva è maggiore di qualsiasi frazione propria positiva, ad esempio:
  • 44/25 > 1 > 19/200
  • Qualsiasi frazione impropria negativa è inferiore a qualsiasi frazione propria negativa, ad esempio:
  • - 44/25 < -1 < - 19/200

3. Frazioni che hanno numeratori e denominatori uguali:

  • Le frazioni sono uguali, ad esempio:
  • 89/50 = 89/50

4. Frazioni che hanno numeratori distinti ma lo stesso denominatore.

  • Frazioni positive: confronta i numeratori, la frazione più grande è quella con il numeratore più grande, ad esempio:
  • 24/25 > 19/25
  • Frazioni negative: confrontare i numeratori, la frazione maggiore è quella con il numeratore più piccolo, ad esempio:
  • - 19/25 < - 17/25

5. Frazioni che hanno denominatori distinti ma lo stesso numeratore.

  • Frazioni positive: confrontare i denominatori, la frazione più grande è quella con il denominatore più piccolo, ad esempio:
  • 24/25 > 24/26
  • Frazioni negative: confrontare i denominatori, la frazione più grande è quella con il denominatore più grande, ad esempio:
  • ie: - 17/25 < - 17/29

6. Frazioni che hanno denominatori e numeratori distinti.

Maggiori informazioni su frazioni / teoria: