- 35/102 - 35/45 = ? Sottrazione di frazioni, calcolatrice online. Operazione di sottrazione spiegata passo dopo passo

Sottrazione di frazioni: - 35/102 - 35/45 = ?

Semplificare l'operazione

Riduci (semplifica) le frazioni ai minimi termini, alla forma equivalente più semplice:

  • Per ridurre (semplificare) una frazione ai minimi termini: dividi il numeratore e il denominatore per il loro massimo comune divisore, MCD.
  • * Perché cerchiamo di ridurre (semplificare) le frazioni?
  • Riducendo i valori dei numeratori e dei denominatori delle frazioni i calcoli sono più facili da eseguire..
  • Una frazione semplificata ai minimi termini è quella con il numeratore e il denominatore più piccoli possibili, una frazione che non può più essere semplificata.

* * *

La frazione: - 35/102

- 35/102 è già semplificata ai minimi termini.


  • Il numeratore e il denominatore non hanno fattori primi comuni.
  • La scomposizione in fattori primi dei due numeri:
  • 35 = 5 × 7
  • 102 = 2 × 3 × 17
  • MCD (5 × 7; 2 × 3 × 17) = 1

La frazione: - 35/45

  • La scomposizione in fattori primi del numeratore e del denominatore:
  • 35 = 5 × 7
  • 45 = 32 × 5
  • Moltiplicare tutti i fattori primi comuni: se ci sono fattori primi comuni ripetuti li prendiamo solo una volta, e solo quelli che hanno l'esponente più basso (le potenze più basse).
  • MCD (35; 45) = 5

- 35/45 = - (35 : 5)/(45 : 5) = - 7/9


  • Un altro metodo per semplificare la frazione:

  • Senza calcolare il MCD, scomporre il numeratore e il denominatore in fattori primi ed eliminare tutti quelli comuni.
  • - 35/45 = - (5 × 7)/(32 × 5) = - ((5 × 7) : 5)/((32 × 5) : 5) = - 7/9



Riscrivi l'operazione semplificata equivalente:

- 35/102 - 35/45 =


- 35/102 - 7/9

Eseguire l'operazione di calcolo con le frazioni.

Per sommare o sottrarre frazioni abbiamo bisogno che abbiano denominatori uguali (lo stesso denominatore).

  • Per calcolare l'operazione delle frazioni dobbiamo:
  • 1) trova il loro comune denominatore (lo stesso denominatore)
  • 2) quindi calcola i numeri per i quali viene moltiplicato ciascun denominatore, in modo da avere tutti i denominatori delle frazioni uguali (allo stesso denominatore)
  • 3) poi riduci le frazioni allo stesso denominatore, cambiandole in forme equivalenti, che hanno tutte lo stesso denominatore

  • * Lo stesso denominatore non è altro che il minimo comune multiplo (MCM) dei denominatori delle frazioni.
  • Il MCM sarà lo stesso denominatore delle frazioni con cui lavoriamo.

1) Trova il comune denominatore
Calcola il MCM dei denominatori:

La scomposizione in fattori primi dei denominatori:


102 = 2 × 3 × 17


9 = 32


Moltiplicare tutti i fattori primi unici: se ci sono fattori primi che si ripetono li prendiamo solo una volta, e solo quelli che hanno l'esponente più alto (le potenze più alte).

MCM (102; 9) = 2 × 32 × 17 = 306



2) Calcola i numeri per i quali viene moltiplicato ciascun denominatore, in modo da avere tutti i denominatori delle frazioni uguali:

Dividi il MCM per il denominatore di ogni frazione.


- 35/102 ⟶ 306 : 102 = (2 × 32 × 17) : (2 × 3 × 17) = 3


- 7/9 ⟶ 306 : 9 = (2 × 32 × 17) : 32 = 34


3) Riduci le frazioni allo stesso denominatore:

  • Cambia ogni frazione in una equivalente: moltiplica sia il numeratore che il denominatore per il numero corrispondente, calcolato al passaggio 2, sopra. In questo modo tutte le frazioni avranno denominatori uguali (lo stesso denominatore).
  • Quindi mantieni il denominatore comune e fai calcoli solo con i numeratori delle frazioni.

- 35/102 - 7/9 =


- (3 × 35)/(3 × 102) - (34 × 7)/(34 × 9) =


- 105/306 - 238/306 =


( - 105 - 238)/306 =


- 343/306


Riduci (semplifica) la frazione ai minimi termini, alla forma equivalente più semplice:

- 343/306 è già semplificata ai minimi termini.

Il numeratore e il denominatore non hanno fattori primi comuni.


  • La scomposizione in fattori primi dei due numeri:
  • 343 = 73
  • 306 = 2 × 32 × 17
  • MCD (73; 2 × 32 × 17) = 1


Riscrivi la frazione

Come numero misto (chiamato anche frazione mista):

  • Un numero misto: un numero intero e una frazione propria, entrambi con lo stesso segno.
  • Una frazione propria: il valore del numeratore è minore del valore del denominatore.
  • Dividi il numeratore per il denominatore e scrivi il quoziente e il resto della divisione, come mostrato di seguito:

- 343 : 306 = - 1 e il resto = - 37 ⇒


- 343 = - 1 × 306 - 37 ⇒


- 343/306 =


( - 1 × 306 - 37)/306 =


( - 1 × 306)/306 - 37/306 =


- 1 - 37/306 =


- 1 37/306

Come numero decimale:

Basta dividere il numeratore per il denominatore, senza resto, come mostrato di seguito:


- 1 - 37/306 =


- 1 - 37 : 306 ≈


- 1,12091503268 ≈


- 1,12

In percentuale:

  • Un valore percentuale p% è uguale alla frazione: p/100, per qualsiasi numero decimale p. Quindi, dobbiamo cambiare la forma del numero ottenuto sopra, per avere un denominatore di 100.
  • Per farlo, moltiplica il numero per la frazione 100/100.
  • Il valore della frazione 100/100 = 1, quindi moltiplicando il numero per questa frazione, il risultato non cambia, solo la forma.

- 1,12091503268 =


- 1,12091503268 × 100/100 =


( - 1,12091503268 × 100)/100 =


- 112,091503267974/100


- 112,091503267974% ≈


- 112,09%



La risposta finale:
:: scritta in quattro modi ::

Come frazione impropria negativa:
(il numeratore >= il denominatore)
- 35/102 - 35/45 = - 343/306

Come numero misto (chiamato anche frazione mista):
- 35/102 - 35/45 = - 1 37/306

Come numero decimale:
- 35/102 - 35/45 ≈ - 1,12

In percentuale:
- 35/102 - 35/45 ≈ - 112,09%

Come vengono scritti i numeri sul nostro sito web: il punto '.' è usato come separatore delle migliaia; la virgola ',' viene utilizzata come separatore decimale; i numeri sono arrotondati a un massimo di 12 decimali (se del caso). L'insieme dei simboli utilizzati sul nostro sito web: / la linea di frazione; : dividendo; × moltiplicando; + più (sommando); - meno (sottrazione); = uguale; ≈ approssimativamente uguale.

Altre operazioni di questo tipo:

Come sottrarre le frazioni:
43/112 - 41/52

Somma frazioni, calcolatrice online:

Maggiori informazioni su frazioni / teoria: