Confronta le due frazioni - 50/209 e - 57/212, quale è più grande? Calcolatrice online

Le frazioni - 50/209 e - 57/212 vengono confrontate costruendo frazioni equivalenti, che hanno denominatori uguali o numeratori uguali

Per confrontare e ordinare più frazioni, dovrebbero avere lo stesso denominatore o lo stesso numeratore.

L'operazione di confronto fra frazioni:
- 50/209 e - 57/212

Semplificare l'operazione
Riduci (semplifica) le frazioni ai minimi termini, alla forma equivalente più semplice:


La frazione: - 50/209

- 50/209 è già semplificata ai minimi termini.

Il numeratore e il denominatore non hanno fattori primi comuni:


  • 50 = 2 × 52
  • 209 = 11 × 19
  • MCD (50; 209) = 1


La frazione: - 57/212

- 57/212 è già semplificata ai minimi termini.

Il numeratore e il denominatore non hanno fattori primi comuni:


  • 57 = 3 × 19
  • 212 = 22 × 53
  • MCD (57; 212) = 1



Per confrontare e ordinare le frazioni, riducile allo stesso numeratore.

Per ridurre le frazioni allo stesso numeratore dobbiamo:

  • 1) calcola questo numeratore comune
  • 2) calcolare quindi i numeri per cui moltiplicare ciascun numeratore, in modo da avere tutti i numeratori delle frazioni uguali
  • 3) trasformare le frazioni in forme equivalenti, che hanno lo stesso numeratore

Calcola il numeratore comune

Il numeratore comune non è altro che il minimo comune multiplo (MCM) dei numeratori delle frazioni.


Per calcolare il MCM abbiamo bisogno della scomposizione dei numeratori in fattori primi:


50 = 2 × 52

57 = 3 × 19


Moltiplicare tutti i fattori primi unici: se ci sono fattori primi che si ripetono li prendiamo solo una volta, e solo quelli che hanno l'esponente più alto (le potenze più alte).


Link esterno » Calcola MCM, il minimo comune multiplo di numeri, calcolatrice online


MCM (50, 57) = 2 × 3 × 52 × 19 = 2.850



Calcola i numeri per i quali viene moltiplicato ciascun numeratore, in modo da avere tutti i numeratori delle frazioni uguali:

Dividi il MCM per il numeratore di ogni frazione.


- 50/209 ⟶ 2.850 : 50 = (2 × 3 × 52 × 19) : (2 × 52) = 57


- 57/212 ⟶ 2.850 : 57 = (2 × 3 × 52 × 19) : (3 × 19) = 50




Riduci le frazioni allo stesso numeratore:

  • Cambia ogni frazione in una equivalente: moltiplica sia il numeratore che il denominatore per il numero corrispondente, calcolato sopra.
  • In questo modo tutte le frazioni avranno numeratori uguali (lo stesso numeratore):

- 50/209 = - (57 × 50)/(57 × 209) = - 2.850/11.913


- 57/212 = - (50 × 57)/(50 × 212) = - 2.850/10.600




Le frazioni hanno lo stesso numeratore, confronta i loro denominatori.

Più grande è il denominatore, più grande è la frazione negativa.


Più grande è il denominatore, più piccola è la frazione positiva.


::: L'operazione di confronto fra frazioni :::
La risposta finale:

Le frazioni ordinate in ordine crescente:
- 2.850/10.600 < - 2.850/11.913

Le frazioni iniziali ordinate in ordine crescente:
- 57/212 < - 50/209

Come vengono scritti i numeri sul nostro sito web: il punto '.' è usato come separatore delle migliaia; la virgola ',' viene utilizzata come separatore decimale; i numeri sono arrotondati a un massimo di 12 decimali (se del caso). L'insieme dei simboli utilizzati sul nostro sito web: / la linea di frazione; : dividendo; × moltiplicando; + più (sommando); - meno (sottrazione); = uguale; ≈ approssimativamente uguale.

Confronta e ordina le frazioni, calcolatrice online:

Scopri come confrontare le frazioni. Passi. Esempi.

Come confrontare due frazioni?

1. Frazioni che hanno segni diversi:

  • Qualsiasi frazione positiva è maggiore di qualsiasi frazione negativa, ad esempio:
  • 4/25 > - 19/2

2. Una frazione propria e una impropria:

  • Qualsiasi frazione impropria positiva è maggiore di qualsiasi frazione propria positiva, ad esempio:
  • 44/25 > 1 > 19/200
  • Qualsiasi frazione impropria negativa è inferiore a qualsiasi frazione propria negativa, ad esempio:
  • - 44/25 < -1 < - 19/200

3. Frazioni che hanno numeratori e denominatori uguali:

  • Le frazioni sono uguali, ad esempio:
  • 89/50 = 89/50

4. Frazioni che hanno numeratori distinti ma lo stesso denominatore.

  • Frazioni positive: confronta i numeratori, la frazione più grande è quella con il numeratore più grande, ad esempio:
  • 24/25 > 19/25
  • Frazioni negative: confrontare i numeratori, la frazione maggiore è quella con il numeratore più piccolo, ad esempio:
  • - 19/25 < - 17/25

5. Frazioni che hanno denominatori distinti ma lo stesso numeratore.

  • Frazioni positive: confrontare i denominatori, la frazione più grande è quella con il denominatore più piccolo, ad esempio:
  • 24/25 > 24/26
  • Frazioni negative: confrontare i denominatori, la frazione più grande è quella con il denominatore più grande, ad esempio:
  • ie: - 17/25 < - 17/29

6. Frazioni che hanno denominatori e numeratori distinti.

Maggiori informazioni su frazioni / teoria: