Confronta le due frazioni 35/23 e 45/33, quale è più grande? Calcolatrice online

Le frazioni 35/23 e 45/33 vengono confrontate costruendo frazioni equivalenti, che hanno denominatori uguali o numeratori uguali

Per confrontare e ordinare più frazioni, dovrebbero avere lo stesso denominatore o lo stesso numeratore.

L'operazione di confronto fra frazioni:
35/23 e 45/33

Semplificare l'operazione
Riduci (semplifica) le frazioni ai minimi termini, alla forma equivalente più semplice:


La frazione: 35/23

35/23 è già semplificata ai minimi termini.

Il numeratore e il denominatore non hanno fattori primi comuni:


  • 35 = 5 × 7
  • 23 è un numero primo.
  • MCD (35; 23) = 1


La frazione: 45/33

  • Scomposizione del numeratore e del denominatore in fattori primi:
  • 45 = 32 × 5
  • 33 = 3 × 11
  • Moltiplicare tutti i fattori primi comuni: se ci sono fattori primi che si ripetono, li prendiamo solo una volta e solo quelli che hanno l'esponente più basso (le potenze più basse).
  • MCD (45; 33) = 3

45/33 = (45 : 3)/(33 : 3) = 15/11


La frazione può anche essere semplificata senza calcolare il MCD; scomporre il numeratore e il denominatore in fattori primi ed eliminare i fattori comuni:


45/33 = (32 × 5)/(3 × 11) = ((32 × 5) : 3)/((3 × 11) : 3) = 15/11




Per confrontare e ordinare le frazioni, riducile allo stesso numeratore.

Per ridurre le frazioni allo stesso numeratore dobbiamo:

  • 1) calcola questo numeratore comune
  • 2) calcolare quindi i numeri per cui moltiplicare ciascun numeratore, in modo da avere tutti i numeratori delle frazioni uguali
  • 3) trasformare le frazioni in forme equivalenti, che hanno lo stesso numeratore

Calcola il numeratore comune

Il numeratore comune non è altro che il minimo comune multiplo (MCM) dei numeratori delle frazioni.


Per calcolare il MCM abbiamo bisogno della scomposizione dei numeratori in fattori primi:


35 = 5 × 7

15 = 3 × 5


Moltiplicare tutti i fattori primi unici: se ci sono fattori primi che si ripetono li prendiamo solo una volta, e solo quelli che hanno l'esponente più alto (le potenze più alte).




Calcola i numeri per i quali viene moltiplicato ciascun numeratore, in modo da avere tutti i numeratori delle frazioni uguali:

Dividi il MCM per il numeratore di ogni frazione.


35/23 ⟶ 105 : 35 = (3 × 5 × 7) : (5 × 7) = 3


15/11 ⟶ 105 : 15 = (3 × 5 × 7) : (3 × 5) = 7




Riduci le frazioni allo stesso numeratore:

  • Cambia ogni frazione in una equivalente: moltiplica sia il numeratore che il denominatore per il numero corrispondente, calcolato sopra.
  • In questo modo tutte le frazioni avranno numeratori uguali (lo stesso numeratore):

35/23 = (3 × 35)/(3 × 23) = 105/69


15/11 = (7 × 15)/(7 × 11) = 105/77




Le frazioni hanno lo stesso numeratore, confronta i loro denominatori.

Più grande è il denominatore, più piccola è la frazione positiva.


Più grande è il denominatore, più grande è la frazione negativa.


::: L'operazione di confronto fra frazioni :::
La risposta finale:

Le frazioni ordinate in ordine crescente:
105/77 < 105/69

Le frazioni iniziali ordinate in ordine crescente:
45/33 < 35/23

Come vengono scritti i numeri sul nostro sito web: il punto '.' è usato come separatore delle migliaia; la virgola ',' viene utilizzata come separatore decimale; i numeri sono arrotondati a un massimo di 12 decimali (se del caso). L'insieme dei simboli utilizzati sul nostro sito web: / la linea di frazione; : dividendo; × moltiplicando; + più (sommando); - meno (sottrazione); = uguale; ≈ approssimativamente uguale.

Confronta e ordina le frazioni, calcolatrice online:

Scopri come confrontare le frazioni. Passi. Esempi.

Come confrontare due frazioni?

1. Frazioni che hanno segni diversi:

  • Qualsiasi frazione positiva è maggiore di qualsiasi frazione negativa, ad esempio:
  • 4/25 > - 19/2

2. Una frazione propria e una impropria:

  • Qualsiasi frazione impropria positiva è maggiore di qualsiasi frazione propria positiva, ad esempio:
  • 44/25 > 1 > 19/200
  • Qualsiasi frazione impropria negativa è inferiore a qualsiasi frazione propria negativa, ad esempio:
  • - 44/25 < -1 < - 19/200

3. Frazioni che hanno numeratori e denominatori uguali:

  • Le frazioni sono uguali, ad esempio:
  • 89/50 = 89/50

4. Frazioni che hanno numeratori distinti ma lo stesso denominatore.

  • Frazioni positive: confronta i numeratori, la frazione più grande è quella con il numeratore più grande, ad esempio:
  • 24/25 > 19/25
  • Frazioni negative: confrontare i numeratori, la frazione maggiore è quella con il numeratore più piccolo, ad esempio:
  • - 19/25 < - 17/25

5. Frazioni che hanno denominatori distinti ma lo stesso numeratore.

  • Frazioni positive: confrontare i denominatori, la frazione più grande è quella con il denominatore più piccolo, ad esempio:
  • 24/25 > 24/26
  • Frazioni negative: confrontare i denominatori, la frazione più grande è quella con il denominatore più grande, ad esempio:
  • ie: - 17/25 < - 17/29

6. Frazioni che hanno denominatori e numeratori distinti.

Maggiori informazioni su frazioni / teoria: