- 19/15 - 207/36 = ? Sottrazione di frazioni, calcolatrice online. Operazione di sottrazione spiegata passo dopo passo

Sottrazione di frazioni: - 19/15 - 207/36 = ?

Semplificare l'operazione

Riduci (semplifica) le frazioni ai minimi termini, alla forma equivalente più semplice:

  • Per ridurre (semplificare) una frazione ai minimi termini: dividi il numeratore e il denominatore per il loro massimo comune divisore, MCD.
  • * Perché cerchiamo di ridurre (semplificare) le frazioni?
  • Riducendo i valori dei numeratori e dei denominatori delle frazioni i calcoli sono più facili da eseguire..
  • Una frazione semplificata ai minimi termini è quella con il numeratore e il denominatore più piccoli possibili, una frazione che non può più essere semplificata.

* * *

La frazione: - 19/15

- 19/15 è già semplificata ai minimi termini.


  • Il numeratore e il denominatore non hanno fattori primi comuni.
  • La scomposizione in fattori primi dei due numeri:
  • 19 è un numero primo
  • 15 = 3 × 5
  • MCD (19; 3 × 5) = 1

La frazione: - 207/36

  • La scomposizione in fattori primi del numeratore e del denominatore:
  • 207 = 32 × 23
  • 36 = 22 × 32
  • Moltiplicare tutti i fattori primi comuni: se ci sono fattori primi comuni ripetuti li prendiamo solo una volta, e solo quelli che hanno l'esponente più basso (le potenze più basse).
  • MCD (207; 36) = 32 = 9

- 207/36 = - (207 : 9)/(36 : 9) = - 23/4


  • Un altro metodo per semplificare la frazione:

  • Senza calcolare il MCD, scomporre il numeratore e il denominatore in fattori primi ed eliminare tutti quelli comuni.
  • - 207/36 = - (32 × 23)/(22 × 32) = - ((32 × 23) : 32 )/((22 × 32) : 32 ) = - 23/4



Riscrivi l'operazione semplificata equivalente:

- 19/15 - 207/36 =


- 19/15 - 23/4

Riscriviamo le frazioni improprie:

  • Una frazione impropria: il valore del numeratore è maggiore del valore del denominatore. Un sottocaso di queste frazioni è quello delle frazioni apparenti - il numeratore della frazione è un multiplo del denominatore.
  • Una frazione propria: il valore del numeratore è minore del valore del denominatore.
  • Ogni frazione impropria verrà riscritta come numero intero e frazione propria, entrambi con lo stesso segno: dividi il numeratore per il denominatore e annota il quoziente e il resto della divisione, come mostrato di seguito.
  • Perché riscriviamo le frazioni improprie?
  • Riducendo il valore del numeratore di una frazione, i calcoli con quella frazione diventano più facili da eseguire.
* * *

La frazione: - 19/15


- 19 : 15 = - 1 e il resto = - 4 ⇒ - 19 = - 1 × 15 - 4


- 19/15 = ( - 1 × 15 - 4)/15 = ( - 1 × 15)/15 - 4/15 = - 1 - 4/15


La frazione: - 23/4


- 23 : 4 = - 5 e il resto = - 3 ⇒ - 23 = - 5 × 4 - 3


- 23/4 = ( - 5 × 4 - 3)/4 = ( - 5 × 4)/4 - 3/4 = - 5 - 3/4



Riscrivi l'operazione semplificata equivalente:

- 19/15 - 23/4 =


- 1 - 4/15 - 5 - 3/4 =


- 6 - 4/15 - 3/4

Eseguire l'operazione di calcolo con le frazioni.

Per sommare o sottrarre frazioni abbiamo bisogno che abbiano denominatori uguali (lo stesso denominatore).

  • Per calcolare l'operazione delle frazioni dobbiamo:
  • 1) trova il loro comune denominatore (lo stesso denominatore)
  • 2) quindi calcola i numeri per i quali viene moltiplicato ciascun denominatore, in modo da avere tutti i denominatori delle frazioni uguali (allo stesso denominatore)
  • 3) poi riduci le frazioni allo stesso denominatore, cambiandole in forme equivalenti, che hanno tutte lo stesso denominatore

  • * Lo stesso denominatore non è altro che il minimo comune multiplo (MCM) dei denominatori delle frazioni.
  • Il MCM sarà lo stesso denominatore delle frazioni con cui lavoriamo.

1) Trova il comune denominatore
Calcola il MCM dei denominatori:

La scomposizione in fattori primi dei denominatori:


15 = 3 × 5


4 = 22


Moltiplicare tutti i fattori primi unici: se ci sono fattori primi che si ripetono li prendiamo solo una volta, e solo quelli che hanno l'esponente più alto (le potenze più alte).

MCM (15; 4) = 22 × 3 × 5 = 60



2) Calcola i numeri per i quali viene moltiplicato ciascun denominatore, in modo da avere tutti i denominatori delle frazioni uguali:

Dividi il MCM per il denominatore di ogni frazione.


- 4/15 ⟶ 60 : 15 = (22 × 3 × 5) : (3 × 5) = 4


- 3/4 ⟶ 60 : 4 = (22 × 3 × 5) : 22 = 15


3) Riduci le frazioni allo stesso denominatore:

  • Cambia ogni frazione in una equivalente: moltiplica sia il numeratore che il denominatore per il numero corrispondente, calcolato al passaggio 2, sopra. In questo modo tutte le frazioni avranno denominatori uguali (lo stesso denominatore).
  • Quindi mantieni il denominatore comune e fai calcoli solo con i numeratori delle frazioni.

- 6 - 4/15 - 3/4 =


- 6 - (4 × 4)/(4 × 15) - (15 × 3)/(15 × 4) =


- 6 - 16/60 - 45/60 =


- 6 + ( - 16 - 45)/60 =


- 6 - 61/60


Riduci (semplifica) la frazione ai minimi termini, alla forma equivalente più semplice:

- 61/60 è già semplificata ai minimi termini.

Il numeratore e il denominatore non hanno fattori primi comuni.


  • La scomposizione in fattori primi dei due numeri:
  • 61 è un numero primo
  • 60 = 22 × 3 × 5
  • MCD (61; 22 × 3 × 5) = 1


Riscrivi il risultato intermedio

Come frazione impropria negativa:
(il numeratore >= il denominatore)

  • Una frazione impropria: il valore del numeratore è maggiore del valore del denominatore. Un sottocaso di queste frazioni è quello delle frazioni apparenti - il numeratore della frazione è un multiplo del denominatore.

- 6 - 61/60 =


( - 6 × 60)/60 - 61/60 =


( - 6 × 60 - 61)/60 =


- 421/60

Come numero misto (chiamato anche frazione mista):

  • Un numero misto: un numero intero e una frazione propria, entrambi con lo stesso segno.
  • Una frazione propria: il valore del numeratore è minore del valore del denominatore.
  • Dividi il numeratore per il denominatore e scrivi il quoziente e il resto della divisione, come mostrato di seguito:

- 421 : 60 = - 7 e il resto = - 1 ⇒


- 421 = - 7 × 60 - 1 ⇒


- 421/60 =


( - 7 × 60 - 1)/60 =


( - 7 × 60)/60 - 1/60 =


- 7 - 1/60 =


- 7 1/60

Come numero decimale:

Basta dividere il numeratore per il denominatore, senza resto, come mostrato di seguito:


- 7 - 1/60 =


- 7 - 1 : 60 ≈


- 7,016666666667 ≈


- 7,02

In percentuale:

  • Un valore percentuale p% è uguale alla frazione: p/100, per qualsiasi numero decimale p. Quindi, dobbiamo cambiare la forma del numero ottenuto sopra, per avere un denominatore di 100.
  • Per farlo, moltiplica il numero per la frazione 100/100.
  • Il valore della frazione 100/100 = 1, quindi moltiplicando il numero per questa frazione, il risultato non cambia, solo la forma.

- 7,016666666667 =


- 7,016666666667 × 100/100 =


( - 7,016666666667 × 100)/100 =


- 701,666666666667/100


- 701,666666666667% ≈


- 701,67%



La risposta finale:
:: scritta in quattro modi ::

Come frazione impropria negativa:
(il numeratore >= il denominatore)
- 19/15 - 207/36 = - 421/60

Come numero misto (chiamato anche frazione mista):
- 19/15 - 207/36 = - 7 1/60

Come numero decimale:
- 19/15 - 207/36 ≈ - 7,02

In percentuale:
- 19/15 - 207/36 ≈ - 701,67%

Come vengono scritti i numeri sul nostro sito web: il punto '.' è usato come separatore delle migliaia; la virgola ',' viene utilizzata come separatore decimale; i numeri sono arrotondati a un massimo di 12 decimali (se del caso). L'insieme dei simboli utilizzati sul nostro sito web: / la linea di frazione; : dividendo; × moltiplicando; + più (sommando); - meno (sottrazione); = uguale; ≈ approssimativamente uguale.

Altre operazioni di questo tipo:

Come sommare le frazioni:
- 28/22 + 216/43

Somma frazioni, calcolatrice online:

Maggiori informazioni su frazioni / teoria: